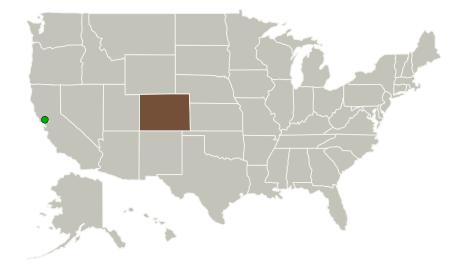
Augmented Reality Telepresence for Robotic Exploration

Completed Technology Project (2015 - 2019)


Project Introduction

State of the art virtual reality requires low latency, on the order of single-digit milliseconds to present a scene to an operator using immersive tracking devices. In conventional teleoperation, the operator's movements are used to directly control a remote camera, requiring a fast response time to avoid simulator sickness, an approach not feasible for interplanetary robotic control with limited bandwidth, high latency communications. The proposed work develops a hybrid architecture to present a model of a coarse virtual world to an operator, while the real imagery slowly refines the presentation as bandwidth allows. An online physics engine allows an actuation command in the virtual world to be faithfully executed in the real world without direct operator feedback. The end goal is a smooth, visually realistic operator interface that allows for remote operation of an exploration vehicle in a blended world scene of virtual and actual data.

Anticipated Benefits

The end goal is a smooth, visually realistic operator interface that allows for remote operation of an exploration vehicle in a blended world scene of virtual and actual data.

Primary U.S. Work Locations and Key Partners

Augmented Reality Telepresence for Robotic Exploration

Table of Contents

Project Introduction	1	
Anticipated Benefits	1	
Primary U.S. Work Locations		
and Key Partners	1	
Project Website:	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)	3	
Technology Areas		
Target Destinations	3	

Space Technology Research Grants

Augmented Reality Telepresence for Robotic Exploration

Completed Technology Project (2015 - 2019)

Organizations Performing Work	Role	Туре	Location
University of	Lead	Academia	Boulder,
Colorado Boulder	Organization		Colorado
Ames Research	Supporting	NASA	Moffett Field,
Center(ARC)	Organization	Center	California

Primary U.S. Work Locations

Colorado

Project Website:

https://www.nasa.gov/strg#.VQb6T0jJzyE

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

University of Colorado Boulder

Responsible Program:

Space Technology Research Grants

Project Management

Program Director:

Claudia M Meyer

Program Manager:

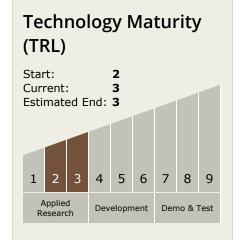
Hung D Nguyen

Principal Investigator:

Nisar Ahmed

Co-Investigator:

Steve Mcguire



Space Technology Research Grants

Augmented Reality Telepresence for Robotic Exploration

Completed Technology Project (2015 - 2019)

Technology Areas

Primary:

- TX10 Autonomous Systems
 - ☐ TX10.2 Reasoning and Acting
 - ☐ TX10.2.4 Execution and Control

Target Destinations

Earth, The Moon

